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Abstract~The original contribution in the present paper can be described as: using the equilibrium
equations of paraboloidal shallow shells expressed by displacements and by introducing a dis­
placement function U, the general solution of the equation can be represented by U(r, qJ), and the
equations can be reduced to single eighth-order equation of U(r, qJ). The displacement function
introduced initially by the authors plays an important role as does Vlasov's displacement function
for the cylindrical shell. The exact series form solution of the equation has been obtained for the
bending problem of the shells. Numerical examples have been carried out for the shell with clamped
boundary condition. Copyright ~:; 1996 Elsevier Science Ltd.
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displacement function
components of displacement
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shape parameter of the shells
arch height
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dimensionless radius variable
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curvatures
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change of curvatures
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I. INTRODUCTION

The calculation of a shallow paraboloidal shell of revolution with arbitrary degree of
parabola meridian is often met in pressure vessel design and aerospace engineering. Due to
the difficulty of the problem, numerical analysis, e.g. finite element analysis (FEA), has to
be used in practical designs because of its versatility. We believe that analytical solutions
are always important, however, even in the case of having a powerful numerical method
both from an academic and an engineering point of view; the analytical solution is very
accurate and straightforward, and it provides closed-form solutions that permit analytical
study of the effects of changing various parameters. Conversely, a specific numerical result
can only be found for a specific problem with special parameters (Cook et al., 1989).
Obviously, the analytical analysis also has the disadvantage that it can only be obtained
for simple loading, geometry and boundary conditions. Even for simple problems, the work
of finding an analytical solution is always difficult and challenging, and that is the reason
why people prefer finite element solutions. It does not mean that closed-form solutions
have no practical application.

As we know, analytical solutions have been obtained for some shells with simpler
geometrical shapes, e.g. cylindrical shells, conical shells, and spherical shells. Until now, no
favoured displacement solution has been obtained for the shallow shell of revolution with
an arbitrary degree of parabola meridian. In this paper we shall shoulder this heavy
responsibility of finding an analytical solution of the problem.

There is little literature to which one can refer. As pioneers, Luo and Pan (1967) were
the first to derive a simplified complex form differential equation and gave the homogeneous
solution for the axisymmetric problem of the shells using Thomson's function under
Gekerler's simplification. The exact general solution for the complex form equation of the
shells, which was established by Luo and Pan (1967), was first obtained by Sun (1989).
However, the solutions reached by Luo and Pan (1967) and Sun (1989) are not easy to
apply to structures composed of shells. On the other hand, the equation derived is in the
complex form and cannot easily be used to treat dynamical problems.

There is clearly a need for an equation which can be used not only for bending and
buckling but also for vibration problems of the shells. It is clear that such equations must
be given in terms of displacement components. Parts of Sun (1989, 1991a, 1991 b) focused
attention on this subject and are the basis of this paper.

The goal of the present paper is to set up the equilibrium equations in terms of
displacements for arbitrary degree paraboloidal shallow shell of revolution made of linear
elastic material subjected to an arbitrary static loading, and to give its exact analytical
solution by using the Bessel functions and hypergeometrical ones. To the authors' knowl­
edge, this kind of problem has never been studied before, and all the results of the present
paper are original. The displacement function of the shell introduced by the authors plays
an important role, as does Vlasov's displacement function for cylindrical shells.

To make the paper self-contained, it is important to repeat a part ofthe results obtained
previously. In Section 2, the geometrical properties of the shells and the approximations of
principal curvatures or Lame parameters, due to the assumption that the shell is shallow,
are illustrated, and the governing equations in terms of displacement components are given
for a linear elastic material under introduction of a special partial differential operator. The
characteristics of these governing equations are discussed before solving the problems.

In Section 3, using the property of the differential operator Dk) = x iJ(:)jiJx under the
variable transformation x = exp (t), where t is a new independent variable, the general
solution of the governing equations is found and the equations are transformed into a
single equation with an unknown U(x, rp) which is called a displacement function for the
shells in this paper.

In Section 4, the solutions of the axisymmetric bending problem of the shells are
presented in the Bessel functions. In Section 5, the solutions of asymmetric problems have
been given in the hyper-geometric functions for the first time.

Finally, a numerical example for axisymmetric bending of the shell with clamped
boundary under distribution loading has been carried out in detail. Through numerical
comparison for uniform normal load, it is revealed that the paraboloidal shell of second
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Fig. I. Geometry of shells.
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degree, i.e. the shallow spherical shell, is the most favourable design under this particular
loading. The optimisation of shape parameter m can also be studied using the solutions
obtained in this paper.

It is worth noting that the displacement function introduced here can also be used to
treat the buckling and vibration problem of the shell. These are to be considered in
forthcoming papers.

2. FORMULATIONS

The formulations of the problem are based on the shell theory of Novozhilov (\ 970).
The notations and meaning of quantities, especially the assumption of shallow shell, can
be found in the book by Novozhilov (\ 970).

2.1. Geometrical description and the approximations for paraboloidal shallow shells
The middle surface of a paraboloidal shallow shell is given by the following equations

(Luo and Pan, 1967; Sun, 1989)

(1)

where f is the arch height of middle surface, R is the maximum radius, x = rlR is a
dimensionless radius variable, m is an arbitrary exponent m ~ 1 (for conical shell, m = 1
and for spherical shell, m = 2,., .). The geometry of the shell is illustrated in Fig. 1.

According to the assumption of shallow shell given by Novizhilov (\970), the two
approximate principal curvatures and Lame parameters for shallow shells of revolution are
defined (Luo and Pan, 1967; Novizhilov, 1970; Sun, 1989), respectively:

(2)

2.2. Strains and change of curvatures of the middle surface in terms of the displacement
components u, v, w

For the shallow paraboloidal shells of revolution, we have

XI = -w,,'"
W-,pw W. r
-~--~

r2 r
IV.f<!' w.'P

r= --+~
r r2

(3)

where 8j, 82, ware strains; XI' X2' r are change of curvatures.
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2.3. Constitutive equations
For shells made of linear elastic materials, we have

T, = K(£I + ,u£2), T2 = K(£2 + ,u£I), S = ~K(1- ,u)w

M 1 = D(XI + ,uX2), M 2 = D(X2 + ,uXI), H = D(1- ,u)r (4)

in which T], T2 , S denote the components of forces of stress resultants, M 1, M 2, H denote
the components of couples of stress resultants, and K = Ehj(l - ,u2), D = Eh3/12(1- ,u2). E
is Young' modulus, ,u is Poisson' ratio, and h is the thickness of the shell. The quantities
used here can be found in Novozhilov (1970).

2.4. The equilibrium equations in terms ofdisplacements
Substituting eqn (3) into eqn (4), and then into equilibrium equations of shells (Novo­

zhilov, 1970), we have the following equilibrium equations in terms of displacement com­
ponents

(5)

where

w c(:) c(:)
W=mfxn- I

-, Dx(:)=x-c ' Cm(:)=---;-
'R x'~ (;qJ

2 1-,u 2 (1 +,u 3-,u)L 11 = Dx -l+-
2

-8,rp, L I2 = -2-D<--2- c.rp,

mfRK
L 31 = -'--xrn+l(aD +b)D x,

a = m-l +,u, b = (m-l),u+ 1, c = (m-l)(m-l +2,u) + 1 (6)

qll q2, and qn denote the components of the load applied on the shell. The mathematical
problem of the shell is to solve eqn (5) under boundary conditions. Unfortunately, the
solution of eqn (5) is very problematic due to the variability of its coefficients. In the
following section, we will reduce eqn (5) into a single equation by introducing a displacement
function, which is possible because of the properties of the dimensionless Euler operator
Di:), which might be considered as a generalised Euler operator.

3, THE DISPLACEMENT FUNCTION AND THE GENERAL SOLUTION OF BENDING
PROBLEM

Let us make a coordinate transformation, x = exp (t) = e t
• Under the transformation

x = exp (t), the operator DxC:) can be changed into the operator 8(:)/ct, i.e. the operators
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L ij (i = 1, 2; j = 1, 2, 3) will be changed into operators with constant coefficients. The
general solution of eqn (5) can be represented in a displacement function vex, cp), i.e.

u = Lu(V)-L22(V\)+LI2(V2)

v = LJV)+L21(Vl)-Lll(V2)

I-II R
IV = ~2-'" mf Xl -mL IV ( V)

where

_-b( 2_ 1-/10")2)0") _ (1+/1 3-/1)riL,. - D, 1+ 2 U,<p c,<p+(aD, b) 2 D,+ 2 c'"

and Vi(i = I, 2) are the particular solutions of the following equations

2R 2 2
2 2 2 2 ~2 X qi

[(D,+O,<p) -2(D,-o<p)+I]Vi = [(I-/1)KJ 0= 1,2).

(7)

(8)

(9)

It can be proved that the first two parts of eqn (5) are automatically satisfied by the general
solution (7). Substitute eqn (7) into the third of eqn (5) and we have an equation of the
displacement function Vex, cp) as follows

(10)

in which

L l = [(D,-m-I)2 +0,2<p][(D,-m+ 1)2 +0,2'1'],

2
L 2 = L,,,, L 3 = cL IV + -I~[(aD,+b)+bL,],

-/1

Pq(x, cp) = mfR 3x m
+

3 ~ +m2F ~ x 2m [(aD, +b)L22 -bL2dVI+ [bL II - (aD, +b)L I2 JV 2 .

(II)

The general solution and basic equation of axisymmetric deformation are as follows

(12a)

(l2b)

where

) 2 2 qo
(b~ -1)v = R X ~

K
(l2c)
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(13)

Equations (12a,b) denote the axisymmetric bending problem. Equation (12c) denotes the
pure torsion problem of the shell. It is shown that the shearing stress distribution due to
torsion is independent of other stress components including those of membrane stress and
bending stress, if q2 = 0 and U2 = O.

It is worth noting that the operator DxC:) = x iJ(:)jiJx plays an important role in
introducing the displacement function V, which is generally called dimensionless Euler
operator. It was originally introduced by Sun (1986) and very successfully applied in Sun
(1987, 1989, 1991a,b), Sun and Huang (1989), Huang and Sun (1986).

Clearly, the contact forces and couples of stress resultants can also be represented in
the displacement function Vex, q» by substituting eqn (7) into eqn (3) and then into eqn
(4).

4. THE AXISYMMETRIC BENDING PROBLEM OF PARABOLOID SHALLOW SHELLS

The eqn (12b) can be rewritten as follows

where

)·0 = mfJ(1-112)~ V = .\""'-1 fYx- mdx+c2.x"'-1

T(x) = .x"'+1 Ix-(m+llPix)dX+C1.x"'+I.

The homogeneous solution of eqn (14) can be written as

(14)

(15)

(16)

in which Zv (...) is the solution of v-order Bessel equation (Wang and Guo, 1979), and the
parameters are

m+l
C(=--

2 '
2Jm+5/2 2~

)11 = , AI =--
m m

(17)

and CI and C2 are constants to be determined by boundary conditions of given problems.

5. ASYMMETRIC BENDING PROBLEM OF PARABOLOIDAL SHALLOW SHELLS

In this case, any unknown functions and loads may be expanded in Fourier serial form
as follows

Equation (10) becomes

OCX'

(:) = L Ons sinnq>+ L One cos nq>.
n=O n=O

(18)
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in which

B1 = [(bx-m - nz -n2][(bx-m+ 1)2 - n2][(b; - n2)2 - 2(b~ + n2) + 1]

B2 = c[(b~ _n2)2 - 2(b~ +n2)+ 1]

2 [ 2 (1 + Ii 3 - Ii) (
1+ Ii 2 2)JB 3 = I_li(abx+b) n b -2-bx--2- -(abx-b) -2-(bx -I)-n

(
1+Ii 3 -Ii) ( 0 1-Ii 0)-nb -2-15,+ -2- Ulm+b 15; -1- -2-n~ U2nc

(
1+ Ii 3-Ii) J-n(abx+b) -2-15'--2- U2ns , Pns=Pnc[c->s,n-+n].
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(19)

(20a)

(20b)

In order to simplify eqn (19), let us introduce two complex functions F = Um+iUns,

Q = Pnc + iPns> where i = J=1. Equation (19) becomes

Equation (21) can be rewritten as follows

Ii (15(+ 2)F-ni (8(+ A)F= Q(04
i~l 2m i~1 2m (2m)

in which

(21)

(22)

:Xl = n+m+ 1, 0:2 = -n+m+ 1, 0: 3 = n+ 1
m2f2 K

Y 2m
I, = - (2m)4 fjajx ,

0:4 = -n+ 1, 0:5 = n+m-I, 0:6 = -n+m-I, 0:7 = n-I,:Xg = -n-l. (23)

Pi (i = 1, 2, 3, 4) are the roots of the following algebraic equation

in which the parameters are

1+ Ii 0
a I = C - -1- a- ,

-Ii

o 1+Ii . 2n .
a2 = -2c(n- + 1) + -1- (a 2+b2-abn2+IGn) + -1- (a 2n-lb)

-Ii -Ii

(24)
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3-f.1- . 1+f.1- .
a3 = ~l-an(bn+l) - ~1-bn(b+l),

-f.1- -f.1-

3-f.1- . 2n J •. 1+f.1-
a4 = c(n2_1)2 + -1-bn(bn-l)- ~l- (b 3n- -1)+ln3-1-'

-f.1- -f.1- -f.1-
(25)

Equation (22) is a Meijer equation. It can be changed into a generalized hypergeometric
equation by proper variable transformation; we have

where

(26)

, f3, - a )
Ai=~' (27)

The homogeneous solution of eqn (26) can be represented by a hypergeometric function

3

'Ph = L Ce (l-w"4F7(a ln a2n a3n a4e ;bon bfn· .. , b7e ;0
e=O

3

+ L C:C-w'4cD7(aln ... ,a4e;bonbfn···,b7e;O (28)
£-,=0

in which C, and C:are arbitrary boundary constants. pFq( ..•) and pcDq(...) are the first and
second generalized hypergeometric function (Kovalenko, 1963), respectively.

In the case of distributed load acted on the shell, Q(O can be written as follows

N

Q(O = L Q,(rr,
['=0

(30)

in which Q,. are known constants, and N is an arbitrary integer. For each term Q,.(J, of eqn
(30), eqn (26) becomes

We have the particular solution of the problem

(31)

(X

'r,i = 1+(J,+ 2~' (32)

It is worth noting that eqn (30) is not a Taylor's series of Q(O, but is only the general
representation of distributed loads.
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0.2 0.4 0.6 0.8
Fig. 2. Couples in the shell for m = I, 1.33, 2. 4.

6. NUMERICAL EXAMPLE AND CONCLUSIONS

We consider a shell of constant thickness, The lower edge is clamped. It is assumed
that Young's modulus E = 107

, Poisson's ratio is 0,3, and hjR = 0,01, fjR = 0,05, The
applied load is a surface load that is uniformly distributed over the middle surface (here
positive outward). We wish to determine the couples in the shell due to this load. By
computing, we obtain the values plotted graphically in Fig. 2. It will be seen that the values
of the couples in the central part of the shell agree closely with the values furnished by the
membrane theory, while edge effects are significant in the vicinity of the edges, This kind
of behaviour is typical of thin shell structures.

We believe that the following conclusions can be reached:

(1) The analytical solution can be obtained by introducing an intelligent variable trans­
formation.

(2) Our formulations of the shell, eqns (7), (9) and (10), are quite general; for instance,
the displacement function introduced in this paper is also valid for the vibration and
buckling of the shell.

(3) The solutions obtained here are useful to optimise the shape of the shell because, in
this case, we have only one shape parameter m concerned for different loading
conditions. For uniform load, it reveals that the paraboloidal shell of second degree,
i.e. the shallow spherical shell, is a favourable design for this paticular loading.

(4) The approach here can also be generalised to treat sandwich paraboloidal shells with
special relations between cores and layers.

(5) Our basic eqn (10) has a dramatic form which is needed for an asymptotic expansion
solution (Goldenveizer, 1961 ; Steele, 1989), which will be given in forthcoming papers.
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